Symbolic Computation

Jiseok Chae

Department of Mathematical Sciences KAIST

Week 10

Jiseok Chae (KAIST)

Symbolic Computation

Week 10

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

э

Contents

1 What is Symbolic Computation?

2) Introduction to Symbolic Computation with MATLAB

3 Doing Calculus with Symbolic Computation

< A I

Symbolic computation focuses on manipulating mathematical expressions, or sometimes more abstractly mathematical objects, more than numerical computations.

To perform symbolic computation, one needs a computer algebra system (CAS). Some examples of CAS are:

- Wolfram Mathematica
- Maple
- Sympy package in Python
- . . .

3 / 20

MATLAB has an add-on toolbox for symbolic computation, the Symbolic Math Toolbox. 1

There are no additional steps needed to activate the Symbolic Math Toolbox. Just type in the functions/commands provided by the Symbolic Math Toolbox, and MATLAB will load the toolbox automatically.

Contents

1 What is Symbolic Computation?

2 Introduction to Symbolic Computation with MATLAB

3 Doing Calculus with Symbolic Computation

< A⊒ ► < Ξ

The command syms is provided by the toolbox, and it generates a *symbolic variable*.

```
>> syms x
% A symbolic variable x is created.
>> syms r theta
% Two symbolic variables r and theta are created.
>> syms A [2 3]
% A symbolic 2x3 matrix A is created.
% The entries A1_1, A1_2, ..., A2_3 are also created.
```

The comments are not printed; they are there to help your understandings.

Let us examine how to manipulate functions.

```
>> y = x^3 - x - 1
y =
x^3 - x - 1
>> z = sin(x)
z =
sin(x)
```

Now the variable y contains the (symbolic) polynomial $x^3 - x - 1$, and the variable z contains the (symbolic) function sin(x).

The command subs performs a substitution.

```
>> subs(y, x, 3)
ans =
23
>> snx = subs(z, x, pi/4)
snx =
2^(1/2)/2
```

Note that the second result returned is the exact value $\sqrt{2}/2$, instead of the (approximated) numerical value 0.7071. This is one of the features of symbolic computation.

Jiseok Chae (KAIST)

To see the result in the usual numerical form, use eval or vpa.

- >> eval(snx)
- ans =
 - 0.7071
- >> vpa(snx)
- ans =
- 0.70710678118654752440084436210485
- >> vpa(snx, 50)
- ans =

0.70710678118654752440084436210484903928483593768847

	4		≣ • ગ < ભ
Jiseok Chae (KAIST)	Symbolic Computation	Week 10	9 / 20

The function sym can be used to change quantities into symbolic objects.

>> x = 123; >> sx = sym(x) sx = 123 >> sx^21 ans =

77269364466549865653073473388030061522211723

Jiseok Chae ((KAIST)
---------------	---------

э

10 / 20

Let us see another example of how symbolic variables can be manipulated.

Have you ever noticed, for any $n \in \mathbb{Z}$, that $\cos(n\theta)$ can be written as a "polynomial" of $\cos(\theta)$?

$$cos(0) = 1 T_0(x) = 1 T_1(x) = x T_2(x) = 2x^2 - 1 T_3(x) = 4x^3 - 3x cos(4\theta) = 8\cos^4(\theta) - 8\cos^2(\theta) + 1 T_4(x) = 8x^4 - 8x^2 + 1 \vdots \vdots \vdots$$

The polynomials $T_n(x)$ are called *Chebyshev polynomials*.

In addition, Chebyshev polynomials satisfy the recurrence

$$T_0(x) = 1,$$

 $T_1(x) = x,$
 $T_{n+2}(x) = 2xT_{n+1}(x) - T_n(x).$

э

12 / 20

• • • • • • • • • •

From the definitions using cosines, one can compute $T_n(x)$ as follows.

```
cheby_cos.m _____
function T = cheby_cos(n, x)
     T = cos(n * acos(x)):
end
>> syms x
>> cheby_cos(4, x)
ans =
\cos(4 \ast a \cos(x))
>> simplify(cheby_cos(4, x))
ans =
8 \times x^{4} - 8 \times x^{2} + 1
                                                 イロト イポト イヨト イヨト
                                                                    э
    Jiseok Chae (KAIST)
                              Symbolic Computation
                                                           Week 10
                                                                       13 / 20
```

From the recurrence relation, one can also compute $T_n(x)$ as follows.

```
>> syms x
>> simplify(cheby_rec(4, x))
```

ans =

 $8 \times x^4 - 8 \times x^2 + 1$

イロト 不得 トイヨト イヨト 三日

Contents

Introduction to Symbolic Computation with MATLAB

3 Doing Calculus with Symbolic Computation

15 / 20

We can compute limits of symbolic expressions using limit.

```
>> \lim_{x \to 0} \frac{\sin x}{x}
ans =
1
>> \lim_{x \to 0} \frac{\sin x}{x}
imit((1+1/x)^(x), x, inf) % \lim_{x \to \infty} (1+x)^x
ans =
exp(1)
```

Jiseok Chae ((KAIST)
---------------	---------

э

We can differentiate a variable w.r.t. another variable using diff.

>> diff(y, x) % computes $\frac{dy}{dx}$ ans = $3*x^2 - 1$ >> diff(z, 2, x) % computes $\frac{d^2}{dx^2}z$ ans = $-\sin(x)$

Expressions such as diff(y) are also possible, but this can cause confusion when a function depends on multiple variables.

Jiseok Chae (KAIST)

17 / 20

We can integrate a variable w.r.t. another variable using int.

```
>> int(y, x) % computes \int y \, dx = \int (x^3 - x - 1) \, dx

ans =

-(x*(-x^3 + 2*x + 4))/4

>> int(z, x, 0, pi) % computes \int_0^{\pi} z \, dx = \int_0^{\pi} \sin x \, dx

ans =

2
```

Of course, not all integrals can be computed. MATLAB only tries its best to compute them.

	~	(1 () () ()
liseok	(hae i	KAISIN
JISCON		
		· /

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

To solve an equation, you can use the function solve, but some minor ad-hoc modifications are often required.

```
>> solve(x^3 - x - 1 == 0, x) % same as solve(v == 0, x)
ans =
root(z^3 - z - 1, z, 1)
root(z^3 - z - 1, z, 2)
root(z^3 - z - 1, z, 3)
```

MATLAB does not like solving high degree polynomial equations. To force MATLAB to compute the solutions in an explicit form, try $solve(x^3 - x - 1 == 0, x, 'MaxDegree', 3)$, then MATLAB will solve up to cubic equations.

To solve an equation, you can use the function solve, but some minor ad-hoc modifications are often required.

```
>> solve(sin(x) == x+1, x) % unable to solve explicitly
Warning: Unable to solve symbolically. Returning a numeric
    solution using vpasolve.
> In sym/solve (line 304)
```

ans =

-1.9345632107520242675632614537689

MATLAB falls back to the numerical solver if symbolic computation fails. As in the warning message, vpasolve can solve the equation numerically. Compare with the result of vpasolve(sin(x) == x+1, x).

イロト イポト イヨト イヨト

3

Thank you!

JISCON CHAE (INAIST)	Jiseo	k Cl	hae ([K/	AIST)
----------------------	-------	------	-------	-----	-------

3

20 / 20

<ロト < 四ト < 三ト < 三ト