
Loops

Jiseok Chae

Department of Mathematical Sciences
KAIST

Week 5

Jiseok Chae (KAIST) Loops Week 5 1 / 15



while loops

Contents

1 while loops

2 for loops

Jiseok Chae (KAIST) Loops Week 5 2 / 15



while loops

Often you will want to execute the same block of commands, possibly with
some parameters varying.

Such repititions can be done using loops.

There are mainly two kinds of loops: while loops and for loops.

Jiseok Chae (KAIST) Loops Week 5 3 / 15



while loops

The basic template for a while loop is:

while ⟨P ⟩
⟨commands to execute while ⟨P ⟩ is TRUE⟩

end

where ⟨P ⟩ is a conditional statement.

The loop body is executed repeatedly, while ⟨P ⟩ is TRUE.

Jiseok Chae (KAIST) Loops Week 5 4 / 15



while loops

Let’s see an example usage of a while loop.

Let’s write a function collatz(n) which, given an integer n, prints out a
collatz sequence until it reaches 1.

We assume that the function collatz next we defined before is in the
Current Folder.

collatz.m

function collatz(n) % no output from the function

disp(n);

while n ~= 1

n = collatz_next(n); % the function we created

disp(n);

end

Jiseok Chae (KAIST) Loops Week 5 5 / 15



while loops

An example when n = 3:

>> collatz(3)

3

10

5

16

8

4

2

1

Jiseok Chae (KAIST) Loops Week 5 6 / 15



while loops

Using while loops must be done with special care, as while loops are
prone to fall into an infinite loop, a loop that never ends.

Infinite loops can appear quite unexpectedly.

For example, the collatz function does not look like a function that
would fall into an infinite loop, as long as the Collatz conjecture is true (as
widely believed).

However, if we were to try collatz(-5), note that the Collatz sequence
will fall into the loop

−5 → −14 → −7 → −20 → −10 → −5

and go on forever without reaching 1, so the function never terminates.

Jiseok Chae (KAIST) Loops Week 5 7 / 15



for loops

Contents

1 while loops

2 for loops

Jiseok Chae (KAIST) Loops Week 5 8 / 15



for loops

while loops are very versatile, and can be used in almost all (if not all)
cases where we need to repeat a block of commands.

However, as we saw just before, there is a caveat.

If you want to run a loop that iterates over a specified set of values, it is
better to use for loops.

The sentence above might be hard to understand at first glance. Let us
see what this means.

Jiseok Chae (KAIST) Loops Week 5 9 / 15



for loops

The basic template for a for loop is:

for i = ⟨some vector v ⟩
⟨commands to execute while i iterates over the elements of v ⟩

end

Here, i is just a placeholder used to denote a parameter. This means that
it can be replaced with any other name. For example, the template above
is equivalent to

for j = ⟨some vector v ⟩
⟨commands to execute while j iterates over the elements of v ⟩

end

Jiseok Chae (KAIST) Loops Week 5 10 / 15



for loops

Recall the command a:b which generates a vector that starts with a, is
incremented by 1 every element, and contains elements only ≤ b.

Hence, if we write...

for i = 1 : n

⟨body of the loop⟩
end

...then because 1 : n is equal to the vector [1 2 . . . n], the commands
in ⟨body of the loop⟩ will be executed n times, and in each iteration the
parameter i will take the values 1, 2, . . . , n in order.

Jiseok Chae (KAIST) Loops Week 5 11 / 15



for loops

As a starting example, let us design a function sqsum(n) which, given a
positive integer n, computes the sum

∑n
i=1 i

2.

The observation made in the previous slide suggests the following
implementation.

sqsum.m

function res = sqsum(n)

res = 0; % initialize the return variable

for i = 1 : n % loop for i from 1 to n

res = res + i * i; % cumulate i^2

end

Use the identity
∑n

i=1 i
2 = n(n+1)(2n+1)

6 to test the function for yourself.

Jiseok Chae (KAIST) Loops Week 5 12 / 15



for loops

A slight modification can be used to make a function sqsum2(a, b)

which, given two positive integers a and b, computes the sum
∑b

i=a i
2.

sqsum2.m

function res = sqsum2(a, b)

res = 0;

for i = a : b % now the loop is for i from a to b

res = res + i * i;

end

>> [sqsum2(4, 8), sqsum(8) - sqsum(3)] % must be equal

ans =

190 190

Jiseok Chae (KAIST) Loops Week 5 13 / 15



for loops

Since the range of the parameter i can be specified by any vector, we can
even modify further to construct a function vecsqsum(v) which, given a
vector v ∈ Rn, computes the sum of the square of the elements,

∑n
i=1 v

2
i .

vecsqsum.m

function res = vecsqsum(v)

res = 0;

for i = v % now the loop is for i in elements of v

res = res + i * i;

end

>> vecsqsum([sin(2), cos(3), sin(3), cos(2)])

ans =

2

Jiseok Chae (KAIST) Loops Week 5 14 / 15



for loops

Thank you!

Jiseok Chae (KAIST) Loops Week 5 15 / 15


	while loops
	for loops

