Advanced Control Flow

Jiseok Chae

Department of Mathematical Sciences KAIST

Week 6

Jiseok Chae (KAIST)

Advanced Control Flow

Week 6

イロト イヨト イヨト

э

Jiseok Chae (KAIST)

Advanced Control Flow

Week 6

- ∢ ≣ ▶

Image: A match a ma

2/14

æ

Loops can be nested.

double_for.m _____

```
for i = 1 : 3
    for j = 4 : 5
        disp([i, j]);
    end
end
```

>> double_for

1	4
1	5
2	4
2	5
3	4
3	5

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲ 圖

The following function $my_add(A, B)$ computes the sum A + B, by using a double loop to iterate over all indices (i, j).

```
my_add.m
function C = my_add(A, B)
if size(A) == size(B) % size(A) is the size of A
    [m, n] = size(A);
    C = zeros(m, n);
    for i = 1 : m
        for j = 1 : n
            C(i, j) = A(i, j) + B(i, j);
        end
    end
else
    disp('size of A and B are different.');
end
```

- 4 回 ト 4 ヨ ト 4 ヨ ト

The following function my_prod(A, B) computes the matrix product AB, by using a triple loop.

my_prod.m ____

```
function C = my_prod(A, B)
[m, p] = size(A); [q, n] = size(B);
if p == q
    C = zeros(m, n);
    for i = 1 : m
        for j = 1 : n
            entry = 0;
            for k = 1 : p
                entry = entry + A(i, k) * B(k, j);
            end
            C(i, j) = entry;
        end
    end
else
    disp('input matrices have imcompatible sizes.')
end
```

イロト イポト イヨト イヨト

3

Loops can be terminated in the middle of execution, by the command break. A typical usage of break is as follows.

```
for i = (range of i)
    (do something...)
    if (P)
        break
    end
    (if loop is not broken then do more things...)
end
```

During the loop, if $\langle P \rangle$ is met, then **break** command is called. In that case, the loop is terminated immediately, without executing further commands in the loop of the body nor further iterations.

Let us consider a modification of the sqsum function, where the loop is terminated when the partial sum exceeds 100.

```
broken_sqsum.m _____
```

```
function res = broken_sqsum(n)
res = 0;
for i = 1 : n
    res = res + i * i;
    if res > 100
        break
    end
end
```

Since $\sum_{i=1}^{6} i^2 = 91$ and $\sum_{i=1}^{7} i^2 = 140$, the value of broken_sqsum(n) with n > 7 will always be 140.

>> broken_sqsu	m(6)		
ans =			
91			
>> broken_sqsu	m(7)		
ans =			
140			
>> broken_sqsu	m(8)		
ans =			
140		 	

	4	ロンスロンスロンスロン、日	୬୯୯
Jiseok Chae (KAIST)	Advanced Control Flow	Week 6	8/14

Contents

Additional topics on loops

イロト イヨト イヨト

æ

We know that, when writing a function, we can call other functions inside the function body.

In fact, a function may also call itself inside its own function body. This is called a *recursion*.

Recursion is useful when, while solving a certain problem, we need a solution for the same problem but with different inputs.

Suppose that we are given two nonnegative integers a and b. We want to compute their greatest common divisor, which we denote by gcd(a, b).

Suppose that, for two nonnegative integers q and r, it holds that

a = qb + r.

One can show that gcd(a, b) = gcd(b, r).

If b > 0, by taking r to be the remainder when a is divided by b, we can ensure that b > r.

Therefore, we can transform a \gcd problem into another \gcd problem, but with the second input strictly decreased.

So, transforming repeatedly, we will eventually reach r = 0.

But if r = 0, then gcd(b, r) = gcd(b, 0) = b, so this means we are done.

An example:

$$gcd(221, 289) = gcd(289, 221) = gcd(221, 68) = gcd(68, 17) = gcd(17, 0) = 17 221 = 0 × 289 + 221 289 = 1 × 221 + 68 221 = 3 × 68 + 17 68 = 4 × 17 + 0 r = 0, so we are done.$$

We now translate our discussion into MATLAB code.

```
my_gcd.m _____
```

```
function res = my_gcd(a, b)
    if b == 0
        res = a;
    else
        r = rem(a, b);
        res = my_gcd(b, r);
    end
end
```

When you use recursion, make sure the function eventually reaches the base case, i.e., the case where the function does not call itself anymore and gets out of it. For my_gcd , this corresponds to checking if b == 0 and returning a immediately in that case.

Thank you!

	-				
1600	~ (hae l	ĸ	51	
11560	<u> </u>				

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト