
Advanced Control Flow

Jiseok Chae

Department of Mathematical Sciences
KAIST

Week 6

Jiseok Chae (KAIST) Advanced Control Flow Week 6 1 / 14



Additional topics on loops

Contents

1 Additional topics on loops

2 Recursion

Jiseok Chae (KAIST) Advanced Control Flow Week 6 2 / 14



Additional topics on loops

Loops can be nested.

double for.m

for i = 1 : 3

for j = 4 : 5

disp([i, j]);

end

end

>> double for

1 4

1 5

2 4

2 5

3 4

3 5

Jiseok Chae (KAIST) Advanced Control Flow Week 6 3 / 14



Additional topics on loops

The following function my add(A, B) computes the sum A+ B, by using a
double loop to iterate over all indices (i, j).

my add.m

function C = my_add(A, B)

if size(A) == size(B) % size(A) is the size of A

[m, n] = size(A);

C = zeros(m, n);

for i = 1 : m

for j = 1 : n

C(i, j) = A(i, j) + B(i, j);

end

end

else

disp(’size of A and B are different.’);

end

Jiseok Chae (KAIST) Advanced Control Flow Week 6 4 / 14



Additional topics on loops

The following function my prod(A, B) computes the matrix product AB,
by using a triple loop.

my prod.m

function C = my_prod(A, B)

[m, p] = size(A); [q, n] = size(B);

if p == q

C = zeros(m, n);

for i = 1 : m

for j = 1 : n

entry = 0;

for k = 1 : p

entry = entry + A(i, k) * B(k, j);

end

C(i, j) = entry;

end

end

else

disp(’input matrices have imcompatible sizes.’)

end

Jiseok Chae (KAIST) Advanced Control Flow Week 6 5 / 14



Additional topics on loops

Loops can be terminated in the middle of execution, by the command
break. A typical usage of break is as follows.

for i = ⟨range of i⟩
⟨do something...⟩
if ⟨P ⟩

break

end

⟨if loop is not broken then do more things...⟩
end

During the loop, if ⟨P ⟩ is met, then break command is called. In that
case, the loop is terminated immediately, without executing further
commands in the loop of the body nor further iterations.

Jiseok Chae (KAIST) Advanced Control Flow Week 6 6 / 14



Additional topics on loops

Let us consider a modification of the sqsum function, where the loop is
terminated when the partial sum exceeds 100.

broken sqsum.m

function res = broken_sqsum(n)

res = 0;

for i = 1 : n

res = res + i * i;

if res > 100

break

end

end

Since
∑6

i=1 i
2 = 91 and

∑7
i=1 i

2 = 140, the value of broken sqsum(n)
with n ≥ 7 will always be 140.

Jiseok Chae (KAIST) Advanced Control Flow Week 6 7 / 14



Additional topics on loops

>> broken sqsum(6)

ans =

91

>> broken sqsum(7)

ans =

140

>> broken sqsum(8)

ans =

140

Jiseok Chae (KAIST) Advanced Control Flow Week 6 8 / 14



Recursion

Contents

1 Additional topics on loops

2 Recursion

Jiseok Chae (KAIST) Advanced Control Flow Week 6 9 / 14



Recursion

We know that, when writing a function, we can call other functions inside
the function body.

In fact, a function may also call itself inside its own function body. This is
called a recursion.

Recursion is useful when, while solving a certain problem, we need a
solution for the same problem but with different inputs.

Jiseok Chae (KAIST) Advanced Control Flow Week 6 10 / 14



Recursion

Suppose that we are given two nonnegative integers a and b. We want to
compute their greatest common divisor, which we denote by gcd(a, b).

Suppose that, for two nonnegative integers q and r, it holds that

a = qb+ r.

One can show that gcd(a, b) = gcd(b, r).

If b > 0, by taking r to be the remainder when a is divided by b, we can
ensure that b > r.

Jiseok Chae (KAIST) Advanced Control Flow Week 6 11 / 14



Recursion

Therefore, we can transform a gcd problem into another gcd problem, but
with the second input strictly decreased.

So, transforming repeatedly, we will eventually reach r = 0.

But if r = 0, then gcd(b, r) = gcd(b, 0) = b, so this means we are done.

An example:

gcd(221, 289) = gcd(289, 221) 221 = 0× 289 + 221

= gcd(221, 68) 289 = 1× 221 + 68

= gcd(68, 17) 221 = 3× 68 + 17

= gcd(17, 0) 68 = 4× 17 + 0

= 17 r = 0, so we are done.

Jiseok Chae (KAIST) Advanced Control Flow Week 6 12 / 14



Recursion

We now translate our discussion into MATLAB code.

my gcd.m

function res = my_gcd(a, b)

if b == 0

res = a;

else

r = rem(a, b);

res = my_gcd(b, r);

end

end

When you use recursion, make sure the function eventually reaches the
base case, i.e., the case where the function does not call itself anymore
and gets out of it. For my gcd, this corresponds to checking if b == 0 and
returning a immediately in that case.

Jiseok Chae (KAIST) Advanced Control Flow Week 6 13 / 14



Recursion

Thank you!

Jiseok Chae (KAIST) Advanced Control Flow Week 6 14 / 14


	Additional topics on loops
	Recursion

