
Random Simulations

Jiseok Chae

Department of Mathematical Sciences
KAIST

Week 9

Jiseok Chae (KAIST) Random Simulations Week 9 1 / 25



Random Number Generation

Contents

1 Random Number Generation

2 Randomized Methods

Jiseok Chae (KAIST) Random Simulations Week 9 2 / 25



Random Number Generation

This week we will see how to generate random numbers in MATLAB, and
how random numbers can be used in “mathematical experiments”.

Experiments do not actually prove anything, but...

• Experimental results help us guess the answer; solving a problem with
knowing the answer can be easier.

• There are problems where solving the problem is proven to be hard;
so in some cases experimental results may be the best we can hope.

⋆ The results shown in this presentation mostly include randomness,
so they will be different from your trials.

Jiseok Chae (KAIST) Random Simulations Week 9 3 / 25



Random Number Generation

The function rand generates a random number, uniformly over the
interval [0, 1].

Multiple random numbers can be generated at once.

>> rand()

ans =

0.4077

>> rand(2, 3)

ans =

0.1435 0.8947 0.1604

0.2274 0.4823 0.2309

Jiseok Chae (KAIST) Random Simulations Week 9 4 / 25



Random Number Generation

Let us verify that the numbers are generated uniformly.
The function histogram generates a histogram of input data.

>> data = rand(100000, 1);

>> histogram(data)

Jiseok Chae (KAIST) Random Simulations Week 9 5 / 25



Random Number Generation

The range of rand cannot be customized. To generate a random number
uniformly over the interval [a, b], scale by (b− a) and add a.

>> 2 * rand(2, 4) - 1 % random between -1 and 1

ans =

0.4072 0.2616 -0.2463 0.0869

-0.3463 0.4845 -0.7914 -0.9134

Jiseok Chae (KAIST) Random Simulations Week 9 6 / 25



Random Number Generation

The function randn generates a random number, from a standard normal
distribution (mean 0, variance 1).

>> randn()

ans =

-1.2048

>> randn(1, 4)

ans =

0.7128 0.7555 2.3122 -1.0013

Jiseok Chae (KAIST) Random Simulations Week 9 7 / 25



Random Number Generation

Again, we can use histogram to verify that the results are from the
standard normal distribution.

>> histogram(randn(100000, 1))

Jiseok Chae (KAIST) Random Simulations Week 9 8 / 25



Random Number Generation

For random integers, we can use the function randi. For a positive integer
n, the command randi(n) chooses a random integer bewteen 1 and n

(both inclusive) with uniform probability.

>> randi(6, [3, 4]) % same as rolling 3*4=12 dice

ans =

6 3 2 3

2 3 5 1

4 2 3 3

Jiseok Chae (KAIST) Random Simulations Week 9 9 / 25



Random Number Generation

randi allows to customize the range. For positive integers a and b, the
command randi([a, b]) chooses a random integer bewteen a and b

(both inclusive) with uniform probability.

>> randi([0, 36], [3, 4])

% same as spinning a European roulette 12 times

ans =

36 35 0 19

2 11 34 29

36 2 10 1

Jiseok Chae (KAIST) Random Simulations Week 9 10 / 25



Random Number Generation

Internally, there is a chaotic mechanism that can generate “random”
numbers, but such mechanisms require an initial value to start.
Those initial values are called seeds, and controlling the seed can make the
results reproducible.

>> rand([1, 4])

ans =

0.4914 0.6993 0.1946 0.7750

>> rand([1, 4])

ans =

0.7079 0.3651 0.9721 0.0930

Jiseok Chae (KAIST) Random Simulations Week 9 11 / 25



Random Number Generation

Internally, there is a chaotic mechanism that can generate “random”
numbers, but such mechanisms require an initial value to start.
Those initial values are called seeds, and controlling the seed can make the
results reproducible.

>> rng(109);

>> rand([1, 4])

ans =

0.6115 0.4914 0.6993 0.1946

>> rng(109);

>> rand([1, 4])

ans =

0.6115 0.4914 0.6993 0.1946

Jiseok Chae (KAIST) Random Simulations Week 9 12 / 25



Randomized Methods

Contents

1 Random Number Generation

2 Randomized Methods

Jiseok Chae (KAIST) Random Simulations Week 9 13 / 25



Randomized Methods

If a given problem is too complex, we may not be able to compute an
exact solution to it.

In those cases, performing experiments (or simulations) over and over and
examining how the results come out might be the best stategy.

Hoping that the law of large numbers somehow magically helps us, we can
infer the true solution by performing multiple random simulations.

Jiseok Chae (KAIST) Random Simulations Week 9 14 / 25



Randomized Methods

Let us try to approximate the volume of a sphere of radius 1.

We generate N random points from the cube [−1, 1]× [−1, 1]× [−1, 1].

Then we count the points that lie inside the sphere. Let this number n.

Then intuitively,
n

N
≈ volume of the sphere

volume of the cube

but we know that the volume of the cube is 8.

Let us now convert this observation into a MATLAB script...

Jiseok Chae (KAIST) Random Simulations Week 9 15 / 25



Randomized Methods

sphere volume.m

N = 10000;

n = 0;

for i = 1 : N

x = 2 * rand(3, 1) - 1;

if x.’ * x <= 1

n = n + 1;

end

end

V = n / N * 8;

disp(V);

disp (4/3 * pi);

Jiseok Chae (KAIST) Random Simulations Week 9 16 / 25



Randomized Methods

Test results:

>> sphere volume

4.1872

4.1888

>> sphere volume

4.2040

4.1888

The approximation is sometimes good, sometimes bad. Having errors is
expected, as random quantities are involved.

Increasing N or averaging the results from multiple trials can reduce error.

Jiseok Chae (KAIST) Random Simulations Week 9 17 / 25



Randomized Methods

Randomization can be applied to linear algebra, and here is a simple but
interesting example.

Suppose we have a linear operator T : Rn → Rn. Let A be its matrix
representation.

We want to compute trace(A), but we don’t know what A (or T ) is.
The only thing we can do is to get the result of Ax = T (x) for a vector x.
We can choose the vector x freely though.

This may be the case where you are given a function, but the design of
that function is too complicated to be interpreted.

Jiseok Chae (KAIST) Random Simulations Week 9 18 / 25



Randomized Methods

Of course, you can reconstruct A by computing Ae1, Ae2, . . . , Aen where
ei are the standard basis vectors of Rn.

However, this requires n matrix-vector multiplications. If n is very large,
we better have a more efficient method.

If obtaining a good enough approximation is sufficient, then we can use
randomization to accomplish our task faster.

Jiseok Chae (KAIST) Random Simulations Week 9 19 / 25



Randomized Methods

⋆ If you are not familiar with probability and statistics, you may skip to
page 21 and take the statement in that page as granted.

Let X1, X2, . . . , Xn be independent random variables having standard
normal distribution.

Then, we know the followings.

• Their expectation is E[Xi] = 0.

• Their variance is Var(Xi) = 1.

• In particular, because Var(Xi) = E[X2
i ]− (E[Xi])

2, it holds that

1 = Var(Xi) = E[X2
i ]− (E[Xi])

2 = E[X2
i ].

• By independence, if i ̸= j, then E[XiXj ] = E[Xi]E[Xj ] = 0.

Jiseok Chae (KAIST) Random Simulations Week 9 20 / 25



Randomized Methods

Let aij be the (i, j)-entry of A. Then for any vector x = [x1 x2 . . . xn]
⊤,

we know that

x⊤Ax =

n∑
i=1

n∑
j=1

aijxixj .

This is just how matrices and vectors are multiplied, so nothing changes if
xi are replaced by the random variables Xi.

But then, because of the linearity of expectation,

E[x⊤Ax] = E

 n∑
i=1

n∑
j=1

aijXiXj

 =

n∑
i=1

n∑
j=1

aij E[XiXj ]

=

n∑
i=1

aii = trace(A).

Jiseok Chae (KAIST) Random Simulations Week 9 21 / 25



Randomized Methods

Therefore, we have just showed the following:

If we sample an n dimensional vector x so that each entry is from a
standard normal distribution, then x⊤Ax will be a random sample
whose expectation is trace(A).

So our strategy is as follows.

• Sample the n dimensional vector x, using the randn function.

• Compute x⊤Ax.

• Take the average of the random samples x⊤Ax.

Then the computed average would hopefully be a decent approximation of
trace(A), if the law of large numbers works.

Jiseok Chae (KAIST) Random Simulations Week 9 22 / 25



Randomized Methods

Let us write a MATLAB script that follows our strategy...

random trace.m

n = 200;

A = rand([n, n]); % pretend we don ’t know this ...

iter = 50; % 50 is a large number in statistics ... :D

res = 0;

for i = 1:iter

x = randn([n, 1]);

est = x’ * A * x;

res = res + est;

end

res = res / iter;

disp(res)

Jiseok Chae (KAIST) Random Simulations Week 9 23 / 25



Randomized Methods

The following histogram shows the results from 2000 iterations of
approximations done by the script in the previous slide.

Jiseok Chae (KAIST) Random Simulations Week 9 24 / 25



Randomized Methods

Thank you!

Jiseok Chae (KAIST) Random Simulations Week 9 25 / 25


	Random Number Generation
	Randomized Methods

